BioSANS2020.analysis.numeric.transform_data
¶
This is the transform_data module
This module process numeric trajectories and either prints the result or display the output into a text area embedded in a canvas or plots it
The following is the list of function for this module:
normalize
calc_cross_corr
calc_covariance2
calc_covariance
fano_factor
prob_density_calc
prob_density_calc2
prob_density_calc3
ave_traj_calc
Module Contents¶
Functions¶
|
returns the normalized form of the input vector v |
|
This function calculates the cross correlation of edata[0] and |
|
This function calculates the covariance of edata[0] and prints |
|
This function calculates the covariance of edata[0] and prints |
|
This function calculates the fano-factor of edata[0] and prints |
|
This function calculates the probability density of edata[0] and |
|
This function calculates the probability density of edata[0] and |
|
This function calculates the probability density of edata[0] per |
|
This function calculates the average trajectory of edata[0] and |
- BioSANS2020.analysis.numeric.transform_data.normalize(vect)¶
returns the normalized form of the input vector v
- BioSANS2020.analysis.numeric.transform_data.calc_cross_corr(edata, items)¶
This function calculates the cross correlation of edata[0] and returns a plot of the correlation as a function of lags. Args:
- edatatwo dimensional array of data & labels (data, label).
data is a 3D array where each row are the individual trajectories. Each trajectory is a 2D numpy array where the first column is time and the remaining columns are the corresponding components.
items : 3 item list of [canvas, scroll_x, scroll_y]
- BioSANS2020.analysis.numeric.transform_data.calc_covariance2(edata)¶
This function calculates the covariance of edata[0] and prints the result in a terminal window. Args:
- edatatwo dimensional array of data & labels (data, label).
data is a 3D array where each row are the individual trajectories. Each trajectory is a 2D numpy array where the first column is time and the remaining columns are the corresponding components.
- BioSANS2020.analysis.numeric.transform_data.calc_covariance(edata, items, points=100)¶
This function calculates the covariance of edata[0] and prints the result in a text area embedded in a canvas. Args:
- edatatwo dimensional array of data & labels (data, label).
data is a 3D array where each row are the individual trajectories. Each trajectory is a 2D numpy array where the first column is time and the remaining columns are the corresponding components.
items : 3 item list of [canvas, scroll_x, scroll_y] points : last number of points considered in covariance
calculation from -points to the end of array or equivalent to [-points:] slice.
- BioSANS2020.analysis.numeric.transform_data.fano_factor(edata, items, points=100)¶
This function calculates the fano-factor of edata[0] and prints the result in a text area embedded in a canvas. Args:
- edatatwo dimensional array of data & labels (data, label).
data is a 3D array where each row are the individual trajectories. Each trajectory is a 2D numpy array where the first column is time and the remaining columns are the corresponding components.
items : 3 item list of [canvas, scroll_x, scroll_y] points : last number of points considered in fano-factor
calculation from -points to the end of array ([-points:] slice)
- BioSANS2020.analysis.numeric.transform_data.prob_density_calc(edata, items)¶
This function calculates the probability density of edata[0] and returns a plot of the probability density. Args:
- edatatwo dimensional array of data & labels (data, label).
data is a 3D array where each row are the individual trajectories. Each trajectory is a 2D numpy array where the first column is time and the remaining columns are the corresponding components.
items : 3 item list of [canvas, scroll_x, scroll_y]
- BioSANS2020.analysis.numeric.transform_data.prob_density_calc2(edata, items)¶
This function calculates the probability density of edata[0] and returns a plot of the probability density with time. Args:
- edatatwo dimensional array of data & labels (data, label).
data is a 3D array where each row are the individual trajectories. Each trajectory is a 2D numpy array where the first column is time and the remaining columns are the corresponding components.
items : 3 item list of [canvas, scroll_x, scroll_y]
- BioSANS2020.analysis.numeric.transform_data.prob_density_calc3(edata, items, bins=50)¶
This function calculates the probability density of edata[0] per bins and returns a plot of the probability density (time slice). Args:
- edatatwo dimensional array of data & labels (data, label).
data is a 3D array where each row are the individual trajectories. Each trajectory is a 2D numpy array where the first column is time and the remaining columns are the corresponding components.
items : 3 item list of [canvas, scroll_x, scroll_y] bins : number of bins an entire trajectory will be discretized
- BioSANS2020.analysis.numeric.transform_data.ave_traj_calc(edata, items)¶
This function calculates the average trajectory of edata[0] and returns a plot of the average trajectory as a function of time. Args:
- edatatwo dimensional array of data & labels (data, label).
data is a 3D array where each row are the individual trajectories. Each trajectory is a 2D numpy array where the first column is time and the remaining columns are the corresponding components.
items : 3 item list of [canvas, scroll_x, scroll_y]