BioSANS2020.prepcodes.process

This is the process module

This module reads BioSANS topology file, grab the components or species, rate constants, stoichiometric matrix, propensity vector, algebraic rules, conditional statements, and othe types of definitions into a dic- tionary. This module calls the process_hub module that distribute the tasks to other modules.

The functions in this module are as follows; #

  1. eval_dict

  2. tofloat

  3. is_number

  4. process

Module Contents

Functions

eval_dict(to_eval, loc_dict)

This function takes a string expression and return the evaluated

tofloat(val, loc_dict)

This function attempts to convert the input val into float

is_number(xvar)

This function checks if a string xvar is float

process(rfile='Reactions', miter=1, conc_unit='molecules', v_volms=1e-20, tend=1, del_coef=10, normalize=False, logx=False, logy=False, method='CLE', tlen=1000, mix_plot=True, save=True, out_fname='', plot_show=True, time_unit='time (sec)', vary='', vary2='', mult_proc=False, implicit=False, items=None, exp_data_file=None, c_input=None)

[summary]

BioSANS2020.prepcodes.process.eval_dict(to_eval, loc_dict)

This function takes a string expression and return the evaluated expression using SBML_FUNCT_DICT and the locals() dictionary where eval_dict is called.

Args:

to_eval (str): the expression to evaluate loc_dict (dict): local dictionary from the calling function

Returns:

multitype: result of eval command

BioSANS2020.prepcodes.process.tofloat(val, loc_dict)

This function attempts to convert the input val into float

Args:

val (str): the expression to evaluate loc_dict (dict): local dictionary from the calling function

Returns:

float: float equivalent of val

BioSANS2020.prepcodes.process.is_number(xvar)

This function checks if a string xvar is float

Args:

xvar (str): input string expression or number

Returns:

bool: True if xvar cal be converted to float otherwise False

BioSANS2020.prepcodes.process.process(rfile='Reactions', miter=1, conc_unit='molecules', v_volms=1e-20, tend=1, del_coef=10, normalize=False, logx=False, logy=False, method='CLE', tlen=1000, mix_plot=True, save=True, out_fname='', plot_show=True, time_unit='time (sec)', vary='', vary2='', mult_proc=False, implicit=False, items=None, exp_data_file=None, c_input=None)

[summary]

Args:

rfile (str): file name of BioSANS topology file. miter (int, optional): Number of iteration or trajectory samples

for stochastic integration

conc_unit (bool, optional): “mole”,”molar”, or “molecules” - the

unit used in any amount in topology file. Defaults to “molecules”.

v_volms (float, optional): the volume of compartment used in the

simulation. Defaults to 1.0e-20.

tend (float): trajectory simulation end time. Defaults to 1. del_coef (float, optional): factor for modifying time steps used

in the integration/propagation of ODE. Defaults to 10.

normalize (bool, optional): True will be normalized the y axis

based on max value . Defaults to False.

logx (bool, optional): If True, the x-axis will be in log scale.

Defaults to False.

logy (bool, optional): if True, the y-axis will be in log scale.

Defaults to False.

method (str, optional): Defaults to “CLE”. Any of the option in

the list of available method keywords is listed below;

Stochastic (refer to section 10.2.4)

  1. “CLE” - Molecules(micro), tau-adaptive

  2. “CLE2” - Molecules(micro), cle-fixIntvl

  3. Gillespie_” - Molecules(micro), Direct method

  4. “Tau-leaping” - Molecules(micro),

    Not swapping with Gillespie

  5. “Tau-leaping2” - Molecules(micro),

    Swapping with Gillespie

  6. “Sim-TauLeap” - Molecules(micro), Simplified,

    Swapping with Gillespie

Deterministic (refer to section 10.2.1)

  1. “Euler-1” - Molecules(micro), tau-adaptive-1

  2. “Euler-2” - Molar (macro), tau-adaptive-1

  3. “Euler-3” - Mole (macro), tau-adaptive-1

  4. “Euler2-1” - Molecules(micro), tau-adaptive-2

  5. “Euler2-2” - Molar (macro), tau-adaptive-2

  6. “Euler2-3” - Mole (macro), tau-adaptive-2

  7. “ODE-1” - Molecules(micro),

    using ode_int from scipy

  8. “ODE-2” - Molar(macro),

    using ode_int from scipy

  9. “ODE-3” - Mole(macro), using ode_int from scipy

  10. “rk4-1” - Molecules(micro), fix-interval

  11. “rk4-2” - Molar(macro), fix-interval

  12. “rk4-3” - Mole(macro), fix-interval

  13. “rk4-1a” - Molecules(micro), tau-adaptive

  14. “rk4-2a” - Molar(macro), tau-adaptive

  15. “rk4-3a” - Mole(macro), tau-adaptive

Linear Noise Approximation (refer to 10.1.2 & 10.2.2)

  1. “LNA” - Numeric, values

  2. “LNA-vs” - Symbolic, values, Macroscopic

  3. “LNA-ks” - Symbolic, f(ks), Macroscopic

  4. “LNA-xo” - Symbolic, f(xo), Macroscopic

  5. “LNA2” - Symbolic, f(xo,ks), Microscopic

  6. “LNA3” - Symbolic, f(xo,ks), Macroscopic

  7. “LNA(t)” - COV-time-dependent, Macroscopic

  8. “LNA2(t)” - FF-time-dependent, Macroscopic

Network Localization (refer to 10.1.3)

  1. “NetLoc1” - Symbolic, Macroscopic

  2. “NetLoc2” - Numeric, Macroscopic

Parameter estimation (refer to 10.2.3)

  1. “k_est1” - MCEM, Macroscopic

  2. “k_est2” - MCEM, Microscopic

  3. “k_est3” - NM-Diff. Evol., Macroscopic

  4. “k_est4” - NM-Diff. Evol., Microscopic

  5. “k_est5” - Parameter slider/scanner

  6. “k_est6” - Nelder-Mead (NM), Macroscopic

  7. “k_est7” - Nelder-Mead (NM), Microscopic

  8. “k_est8” - Powell, Macroscopic

  9. “k_est9” - Powell, Microscopic

  10. “k_est10” - L-BFGS-B, Macroscopic

  11. “k_est11” - L-BFGS-B, Microscopic

Symbolic/Analytical expression of species (refer to 10.1.1)

  1. “Analyt” - Pure Symbolic :f(t,xo,k)

  2. “Analyt-ftx” - Semi-Symbolic :f(t,xo)

  3. “SAnalyt” - Semi-Symbolic :f(t)

  4. “SAnalyt-ftk” - Semi-Symbolic :f(t,k)

  5. “Analyt2” - Creates commands for wxmaxima

tlen (int, optional): number of integration steps reported in

the final result. Defaults to 1000.

mix_plot (bool, optional): If True, all species are plotted in

one plot/figure. Defaults to True.

save (bool, optional): If True, the resulting trajectory in the

simulation will be saved as a file. Defaults to True.

out_fname (str, optional): output filename. Defaults to “”. plot_show (bool, optional): If True, an image of the plots will

be created in the directory of the topology file.

time_unit (str, optional): Defaults to “time (sec)”. vary (str, optional): Varying initial concentration.

Defaults to “”.

vary2 (str, optional): [description]. Defaults to “”. mult_proc (bool, optional): If True, trajectories will be propa-

gated on parallel. Defaults to False.

implicit (bool, optional): True means report in time intervals

similar to the input time intervals even if actual step is more or less. Defaults to False.

items (tuple, optional): (canvas, scroll_x, scroll_y).

Defaults to None.

exp_data_file ([type], optional): Experimental data file contai-

ning True or accepted trajectories. Defaults to None.

c_input (dict, optional): [description]. Defaults to {}.

Returns:
list: list of simulated trajecotry.

data[j][0] - time for trajectory j data[j][1][:, i] - trajectories of each component i