BioSANS2020.prepcodes.process
¶
This is the process module
This module reads BioSANS topology file, grab the components or species, rate constants, stoichiometric matrix, propensity vector, algebraic rules, conditional statements, and othe types of definitions into a dic- tionary. This module calls the process_hub module that distribute the tasks to other modules.
The functions in this module are as follows; #
eval_dict
tofloat
is_number
process
Module Contents¶
Functions¶
|
This function takes a string expression and return the evaluated |
|
This function attempts to convert the input val into float |
|
This function checks if a string xvar is float |
|
[summary] |
- BioSANS2020.prepcodes.process.eval_dict(to_eval, loc_dict)¶
This function takes a string expression and return the evaluated expression using SBML_FUNCT_DICT and the locals() dictionary where eval_dict is called.
- Args:
to_eval (str): the expression to evaluate loc_dict (dict): local dictionary from the calling function
- Returns:
multitype: result of eval command
- BioSANS2020.prepcodes.process.tofloat(val, loc_dict)¶
This function attempts to convert the input val into float
- Args:
val (str): the expression to evaluate loc_dict (dict): local dictionary from the calling function
- Returns:
float: float equivalent of val
- BioSANS2020.prepcodes.process.is_number(xvar)¶
This function checks if a string xvar is float
- Args:
xvar (str): input string expression or number
- Returns:
bool: True if xvar cal be converted to float otherwise False
- BioSANS2020.prepcodes.process.process(rfile='Reactions', miter=1, conc_unit='molecules', v_volms=1e-20, tend=1, del_coef=10, normalize=False, logx=False, logy=False, method='CLE', tlen=1000, mix_plot=True, save=True, out_fname='', plot_show=True, time_unit='time (sec)', vary='', vary2='', mult_proc=False, implicit=False, items=None, exp_data_file=None, c_input=None)¶
[summary]
- Args:
rfile (str): file name of BioSANS topology file. miter (int, optional): Number of iteration or trajectory samples
for stochastic integration
- conc_unit (bool, optional): “mole”,”molar”, or “molecules” - the
unit used in any amount in topology file. Defaults to “molecules”.
- v_volms (float, optional): the volume of compartment used in the
simulation. Defaults to 1.0e-20.
tend (float): trajectory simulation end time. Defaults to 1. del_coef (float, optional): factor for modifying time steps used
in the integration/propagation of ODE. Defaults to 10.
- normalize (bool, optional): True will be normalized the y axis
based on max value . Defaults to False.
- logx (bool, optional): If True, the x-axis will be in log scale.
Defaults to False.
- logy (bool, optional): if True, the y-axis will be in log scale.
Defaults to False.
- method (str, optional): Defaults to “CLE”. Any of the option in
the list of available method keywords is listed below;
Stochastic (refer to section 10.2.4)
“CLE” - Molecules(micro), tau-adaptive
“CLE2” - Molecules(micro), cle-fixIntvl
“Gillespie_” - Molecules(micro), Direct method
- “Tau-leaping” - Molecules(micro),
Not swapping with Gillespie
- “Tau-leaping2” - Molecules(micro),
Swapping with Gillespie
- “Sim-TauLeap” - Molecules(micro), Simplified,
Swapping with Gillespie
Deterministic (refer to section 10.2.1)
“Euler-1” - Molecules(micro), tau-adaptive-1
“Euler-2” - Molar (macro), tau-adaptive-1
“Euler-3” - Mole (macro), tau-adaptive-1
“Euler2-1” - Molecules(micro), tau-adaptive-2
“Euler2-2” - Molar (macro), tau-adaptive-2
“Euler2-3” - Mole (macro), tau-adaptive-2
- “ODE-1” - Molecules(micro),
using ode_int from scipy
- “ODE-2” - Molar(macro),
using ode_int from scipy
“ODE-3” - Mole(macro), using ode_int from scipy
“rk4-1” - Molecules(micro), fix-interval
“rk4-2” - Molar(macro), fix-interval
“rk4-3” - Mole(macro), fix-interval
“rk4-1a” - Molecules(micro), tau-adaptive
“rk4-2a” - Molar(macro), tau-adaptive
“rk4-3a” - Mole(macro), tau-adaptive
Linear Noise Approximation (refer to 10.1.2 & 10.2.2)
“LNA” - Numeric, values
“LNA-vs” - Symbolic, values, Macroscopic
“LNA-ks” - Symbolic, f(ks), Macroscopic
“LNA-xo” - Symbolic, f(xo), Macroscopic
“LNA2” - Symbolic, f(xo,ks), Microscopic
“LNA3” - Symbolic, f(xo,ks), Macroscopic
“LNA(t)” - COV-time-dependent, Macroscopic
“LNA2(t)” - FF-time-dependent, Macroscopic
Network Localization (refer to 10.1.3)
“NetLoc1” - Symbolic, Macroscopic
“NetLoc2” - Numeric, Macroscopic
Parameter estimation (refer to 10.2.3)
“k_est1” - MCEM, Macroscopic
“k_est2” - MCEM, Microscopic
“k_est3” - NM-Diff. Evol., Macroscopic
“k_est4” - NM-Diff. Evol., Microscopic
“k_est5” - Parameter slider/scanner
“k_est6” - Nelder-Mead (NM), Macroscopic
“k_est7” - Nelder-Mead (NM), Microscopic
“k_est8” - Powell, Macroscopic
“k_est9” - Powell, Microscopic
“k_est10” - L-BFGS-B, Macroscopic
“k_est11” - L-BFGS-B, Microscopic
Symbolic/Analytical expression of species (refer to 10.1.1)
“Analyt” - Pure Symbolic :f(t,xo,k)
“Analyt-ftx” - Semi-Symbolic :f(t,xo)
“SAnalyt” - Semi-Symbolic :f(t)
“SAnalyt-ftk” - Semi-Symbolic :f(t,k)
“Analyt2” - Creates commands for wxmaxima
- tlen (int, optional): number of integration steps reported in
the final result. Defaults to 1000.
- mix_plot (bool, optional): If True, all species are plotted in
one plot/figure. Defaults to True.
- save (bool, optional): If True, the resulting trajectory in the
simulation will be saved as a file. Defaults to True.
out_fname (str, optional): output filename. Defaults to “”. plot_show (bool, optional): If True, an image of the plots will
be created in the directory of the topology file.
time_unit (str, optional): Defaults to “time (sec)”. vary (str, optional): Varying initial concentration.
Defaults to “”.
vary2 (str, optional): [description]. Defaults to “”. mult_proc (bool, optional): If True, trajectories will be propa-
gated on parallel. Defaults to False.
- implicit (bool, optional): True means report in time intervals
similar to the input time intervals even if actual step is more or less. Defaults to False.
- items (tuple, optional): (canvas, scroll_x, scroll_y).
Defaults to None.
- exp_data_file ([type], optional): Experimental data file contai-
ning True or accepted trajectories. Defaults to None.
c_input (dict, optional): [description]. Defaults to {}.
- Returns:
- list: list of simulated trajecotry.
data[j][0] - time for trajectory j data[j][1][:, i] - trajectories of each component i