:py:mod:`BioSANS2020.propagation.law_of_localization` ===================================================== .. py:module:: BioSANS2020.propagation.law_of_localization .. autoapi-nested-parse:: This module is the law_of_localization module The sole purpose of this module is to implement the law of localization Module Contents --------------- Functions ~~~~~~~~~ .. autoapisummary:: BioSANS2020.propagation.law_of_localization.subs2 BioSANS2020.propagation.law_of_localization.prepare_ffrrint BioSANS2020.propagation.law_of_localization.prepare_dict_list1 BioSANS2020.propagation.law_of_localization.prepare_list2 BioSANS2020.propagation.law_of_localization.law_loc_symbolic .. py:function:: subs2(zvar, cval) This function substitute actual values to sympy symbols. Args: zvar (sympy.core): sympy expression cval (disct): dictionary of Symbols : value Returns: (sympy.core): substituted expression .. py:function:: prepare_ffrrint(items) This function instantiate how the output will be printed by crea- thing the function ffprint Args: text (Text): text area where the outputs are written items (tuple): 3 item list of (canvas, scroll_x, scroll_y) Returns: function: either print in console or in text area .. py:function:: prepare_dict_list1(sp_comp, conc, ks_dict) This function prepares cs_var, cso_var, time Args: sp_comp (dict): dictionary of components position in reaction conc (dict) : dictionary of initail concentration Returns: (dict/list): cs_var, cso_var, equivals, equi_ks .. py:function:: prepare_list2(stch_var, slabels) This function prepares two list from stoichiometric matrix Args: stch_var (np.ndarray): toichiometric matrix Returns: list: [non zero row values of stch_var, nonzero rows index of stch_var] .. py:function:: law_loc_symbolic(sp_comp, ks_dict, conc, r_dict, p_dict, stch_var, items=None, molar=False, mode=None, numer=False) [summary] Args: sp_comp (dict): dictionary of appearance or position of species or component in the reaction tag of BioSANS topology file. For example; #REACTIONS A => B, -kf1 # negative means to be estimated B => C, kf2 The value of sp_comp is sp_comp = {'A': {0}, 'B': {0, 1}, 'C': {1}} A appears in first reaction with index 0 B appears in first and second reaction with index 0, 1 C appears in second reaction with index 1 ks_dict (dict): dictionary of rate constant that appear in each reactions. For example; #REACTIONS A => B , 0.3 # first reaction B <=> C, 0.1, 0.2 # second reaction The value of ks_dict is ks_dict = { 0 : [0.3], # first reaction 1 : [0.1, 0.2] # second reaction } conc (dict): dictionary of initial concentration. For example; {'A': 100.0, 'B': -1.0, 'C': 0.0} negative means unknown or for estimation r_dict (dict): dictionary of reactant stoichiometry. For example r_dict = { 0: {'A': 1}, # first reaction, coefficient of A is 1 1: {'B': 1} # second reaction, coefficient of B is 1 } p_dict (dict): dictionary of product stoichiometry. For example p_dict = { 0: {'B': 1}, # first reaction, coefficient of B is 1 1: {'C': 1} # second reaction, coefficient of C is 1 } stch_var (np.ndarray): stoichiometric matrix items (tuple): 3 item list of (canvas, scroll_x, scroll_y) molar (bool, optional): [description]. Defaults to False. mode (str, optional): either "Numeric", "fofks", "fofCo". numer (bool, optional): If True, numeric substitution will be done. Defaults to False. Returns: list: [0, 0] - useless return